Transport in finite size systems: An exit time approach.
نویسندگان
چکیده
In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In particular, we study models with open streamlines and a finite number of recirculation zones. In the nontrivial case with a small number of recirculation zones a description by means of asymptotic quantities (such as the eddy diffusivity) is not appropriate. The nonasymptotic properties of dispersion are characterized by means of the exit time statistics, which shows strong sensitivity on initial conditions. This yields a probability distribution function with long tails, making impossible a characterization in terms of a unique typical exit time. (c) 1999 American Institute of Physics.
منابع مشابه
ar X iv : c ha o - dy n / 99 03 01 4 v 1 9 M ar 1 99 9 Transport in finite size systems : an exit time approach
In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In particular, we study models with open streamlines and a finite number of recirculation zones. In the non trivial case with a small number of recirculation zones a description by mean of asymptotic quantities (such as the eddy diffusivity) is not appropriate. The non asymptotic properties of dispersi...
متن کاملSystematic integrated approach to quantifying preventive diagnostics in a “smart” transport system
One of the main tasks facing all European countries for the next few years is the creation of the most dynamically organized transport sector. The constant passenger and freight traffic lead to congestions and pollutions at the transport highways, having negative impact on a person. Thus, introduction of new technologies, addressing the interrelated problems of optimizing transport flows and im...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1999